
Theory of Programming Languages Budditha Hettige Department of Computer Engineering

1
Programming Languages

Formal languages

1

- Attempts have been made by linguists in early 50's to define precisely
 - valid sentences
 - give structural descriptions of sentences
 - formal grammar
 - describe the rules of grammar in rigorous mathematical way

to describe English

TPL 2019

4

Formal languages ...

- It was believed that, such description of natural languages would make language translation using computers easily.
- Noam Chomsky gave a mathematical model of a grammar in 1956.
- It turned out to be useful for computer languages but not for natural languages.
- Definition of context-free grammar by Chomsky was used to describe Algorithmic Languages

Programming language?

- A programming language is a set of rules that provides a way of telling a computer what operations to perform.
- A programming language is a set of rules for communicating an algorithm
- It provides a linguistic framework for describing computations

J 17L 2019

Programming language?

- A programming language is a notational system for describing computation in a machine-readable and human-readable form.
- A programming language is a tool for developing executable models for a class of problem domains.

Programming language?

- English is a natural language. It has words, symbols and grammatical rules.
- A programming language also has words, symbols and rules of grammar.
- The grammatical rules are called syntax.
- Each programming language has a different set of syntax rules

7

Programming language?

- Programming languages have evolved over time as better ways have been developed to design them.
- First programming languages were developed in the 1950s
- Since then thousands of languages have been developed
- Different programming languages are designed for different types of programs.

C++ Vs Natural Languages

- C++
 - Artificial Language
 - Consist of
 - Keywords
 - Syntax
 - Semantics
 - Translate through the Compilers

- Natural Language
 - Natural
 - Consist of
 - Words
 - Syntax
 - Semantics
 - Translate trough the Machine Translation systems or Human

Key words/ words

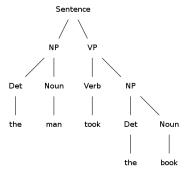
Syntax

• C++

regi else explicit sho export(1) sign extern Size false sta float sta for sta friend stri goto tem inline thi int thr long thre mutable tru namespace try typ noexcept (since C++11) type

Natural Language

Nouns	<u>Verbs</u>	
book	drive	ć
park	wash	
clock	sleep	
dog	skate	
Molly	hide	
cookies	eat	_
car	wave	_
tree	play	
pen	work	8
book	hop	


Rules for construction of valid statements, including, Order of words, Punctuation

• C++

#include <iostream>
using namespace std.
void swap()
{
 cout<<"this is i
}
int main()
{
 int firstNum ,
 cout<<"Enter val
 cin>>firstNum;
 cout<<"Enter val
 cin>>secondNum;

Natural Language

Grammar rules, subject, object, verbs etc.

budditha@yahoo.com

11

budditha@yahoo.com

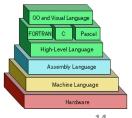
budditha@yahoo.com

12

Semantics

• C++

The set of rules that determines the meaning of instructions (what the computer will do) written in a programming language. Natural Language
 Is the study of meaning


budditha@yahoo.com

13

Programming languagegenerations

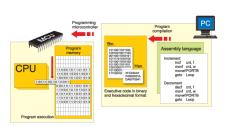
This classification is used to indicate increasing power of programming styles

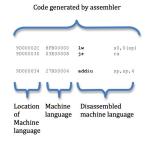
- 1. First-generation programming languages
- 2. Second-generation programming languages
- 3. Third-generation programming languages
- 4. Fourth-generation programming languages
- 5. Fifth-generation programming languages

Budditha Hettige (huse itha @yahoo.com)

First-generation programming language (1GL)

- · Is a machine-level programming language
- Translator isn't used to compile
- The instructions in 1GL are made of binary numbers, represented by 1s and 0s
- Advantage
 - The code can run very fast and very efficiently because the instructions are executed directly by the CPU
- Disadvantage
 - When an error occurs, the code is not as easy to fix


Human to Machine


Executable Machine code

 0001001001000101 0001001001000101 0010010011101100 0010010011101100 10101101001... 10101101001...

- Assembly language.
- Properties
 - The code can be read and written by a programmer
 - The language is specific to a particular processor family and environment
- Used in kernels and device drivers

Budditha Hettige (Juggitha @yahoo.com)

117

Human to Machine

High-level program

 $x = b^*h/2$; return x

Low-level program

LOAD r1,b LOAD r1,b

LOAD r2,h LOAD r2,h

MUL r1,r2 MUL r1,r2

DIV r1,#2 DIV r1,#2

Advantages

- It requires less memory and execution time;
- It allows hardware-specific complex jobs in an easier way;
- It is suitable for time-critical jobs;
- It is most suitable for writing interrupt service routines and other memory resident programs.

Syntax

- One statement per line
- Format
 - -[label] mnemonic [operands] [;comment]

```
INC COUNT ; Increment the memory variable COUNT

MOV TOTAL, 48 ; Transfer the value 48 in the ; memory variable TOTAL

ADD AH, BH ; Add the content of the ; BH register into the AH register

AND MASK1, 128 ; Perform AND operation on the ; variable MASK1 and 128

ADD MARKS, 10 ; Add 10 to the variable MARKS MOV AL, 10 ; Transfer the value 10 to the AL register
```

. .

Hello world program

```
section .text
   global _start
                     ;must be declared for linker (ld)
                    ;tells linker entry point
start:
   mov edx,len
                    ;message length
   mov ecx, msg
                    ;message to write
                    ;file descriptor (stdout)
  mov ebx,1
       eax,4
                    ;system call number (sys_write)
  mov
  int 0x80
                    ;call kernel
                    ;system call number (sys_exit)
  mov eax,1
                    ;call kernel
  int 0x80
section .data
msg db 'Hello, world!', 0xa ;string to be printed
                    ;length of the string
len equ $ - msg
```

TPL 2019

Instruction Set

TABLE 10-2: PIC12F629/675 INSTRUCTION SE

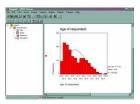
Mnemo	onic.			14-Bit Opcode			•	Status
Opera		Description	Cycles	MSb			LSb	Affected
		BYTE-ORIENTED FILE RE	SISTER OPE	RATIC	NS			
ADDWF	f, d	Add W and f	1	0.0	0111	dfff	ffff	C,DC,Z
ANDWF	f, d	AND W with f	1	0.0	0101	dfff	ffff	Z
CLRF	f	Clear f	1	0.0	0001	lfff	ffff	z
CLRW	-	Clear W	1	0.0	0001	0xxx	xxxx	z
COMF	f, d	Complement f	1	0.0	1001	dfff	ffff	Z
DECF	f. d	Decrement f	1	0.0	0011	dfff	ffff	Z
DECESZ	f, d	Degrement f, Skip if 0	1(2)	0.0	1011	dfff	ffff	_
INCF	f. d	Increment f	1	0.0	1010	dfff	ffff	z
INCESZ	f. d	Increment f. Skip if 0	1(2)	0.0		dfff		_
IORWE	f. d	Indusive OR W with f	1 1	00	0100		ffff	z
MOVE	f, d	Move f	l i	0.0	1000	dfff		z
MOVWF	f	Move W to f	1 i	0.0	0000		ffff	_
NOP	- :	No Operation	l i	0.0	0000	0xx0	0000	
RLF	f. d	Rotate Left f through Carry	l i	0.0		dfff		С
RRF	f. d	Rotate Right f through Carry	i	0.0	1100		EEEE	c
SUBWF	f. d	Subtract W from f	1 1	00	0010		ffff	C.DC.
SWAPF	f, d	Swap nibbles in f	l i	00	1110		ffff	0,50,
XORWF	f, d	Exclusive OR W with f	l i	00	0110			z
		BIT-ORIENTED FILE REG	ISTER OPER	ATIO	18			
BCF	f, b	Bit Clear f	1	01	dd00	bfff	ffff	
BSF	f, b	Bit Set f	1	01		bfff		
BTESC	f, b	Bit Test f. Skip if Clear	1 (2)	01		bfff		
BTFSS	f. b	Bit Test f. Skip if Set	1 (2)	01		bfff		
		LITERAL AND CONTR	OL OPERAT	IONS				
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C.DC.
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk	
CLRWDT	-	Clear Watchdog Timer	1	0.0	0000	0110	0100	TO.PI
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	
IORLW	k	Indusive OR literal with W	1	11	1000		kkkk	z
MOVLW	k	Move literal to W	1	11	0.022	kkkkk	kkkk	
RETFIE	-	Return from interrupt	2	0.0	0000	0000	1001	
RETLW	k	Return with literal in W	2	11	01xx		kkkk	
RETURN	-	Return from Subroutine	2	00	0000	0000	1000	
SLEEP	-	Go into Standby mode	1 1	0.0	0000	0110	0011	TO.PE
SUBLW	k	Subtract W from literal	1 1	22	220x	Adda	Addah	C.DC.2

Third-generation programming languages (3GL)

- Languages are more programmer-friendly
- Example
 - C, C++, C#, Java, BASIC and Pascal
- Support structured programming.
- Must be translated into machine language by a compiler or interpreter

- Advantages
 - Easier to read, write, and maintain

C++ Keywords

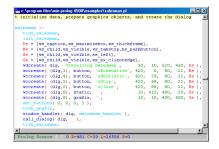

9	asm	auto	bool	break
9	case	catch	char	class
9	const	const_cast	continue	default
9	delete	do	double	dynamic_cast
9	else	enum	explicit	export
9	extern	false	float	for
9	friend	goto	if	inline
9	int	long	mutable	namespace
3	new	operator	private	protected
3	public	register	reinterpret_cast	return
3	short	signed	sizeof	static
3	static_cast	struct	switch	template
3	this	throw	true	try
3	typedef	typeid	typename	union
3	unsigned	using	virtual	void
3	volatile	wchar t	while	Western.
	T 2 2 2 1 1 2 2	ALANDON STORY	555887574	

21

Fourth-generation programming languages (4GL)

- Designed to reduce programming effort
- Consist of
 - Set of libraries
 - CRUD generators
 - Report generators
 - DBMS
 - Visual design tool and integration API
- Different types of 4GLs
 - Table-driven (codeless) programming
 - PowerBuilder
 - Data management
 - · SAS, SPSS
 - Report-generator programming languages
 - Oracle Developer Suite

Budditha Hettige (budditha@yahoo.com)



Fifth-generation programming language(5GL)

- Based on solving problems using constraints given to the program, rather than using an algorithm written by a programmer
- Use mainly in Artificial Intelligence research
- Example
 - Prolog, OPS5, and Mercury

Budditha Hettige huggitha@yahoo.com

28

Example

```
course(csu2280, as101, 76).
course(csu2280, as102, 56).
course(csu2280, as103, 45).
course(csu2279, as101, 78).
course(csu2279, as102, 29).

printList([]).
printList([H|T]) :- write(H),nl,printList(T).

stuList(Cou) :- write('stu listRule Starting...'),nl,
setof(ID, Mark^ course(Cou,ID,Mark), List),
printList(List).
```

High Level Languages

- A high level language (4GL) that requires fewer instructions to accomplish a task than a third generation language.
 - Used with databases
 - Query languages
 - Report generators
 - Forms designers
 - Application generators

TPL 2019 27 PPL 2019

High Level Languages

- Declarative languages
- Functional(?): Lisp, Scheme, SML
- · Also called applicative
- Everything is a function
- Logic: Prolog Based on mathematical logic Rule- or Constraint-based

Natural Language programs

- Though no clear definition at present, natural language programs generally can be interpreted and executed by the computer with no other action by the user than stating their question directly.
- However, at present capabilities of natural language programs are limited.

TPL 2019

Programming paradigms

- Imperative Programming (procedural programming?) (C)
- Object-Oriented Programming (C++)
- Logic/Declarative Programming (Prolog)
- Functional/Applicative Programming (Lisp)

Two broad groups of programming languages

Traditional programming languages

- Sequences of instructions first, second and some third generation languages
- Object-oriented languages
- Objects are created rather than sequences of instructions
- Some third generation, and fourth and fifth generation languages are examples for OOLs

FORTRAN - FORmula TRANslation. • Developed at IBM in the mid-1950s. • Designed for scientific and mathematical

 Designed for scientific and mathematical applications by scientists and engineers.

COBOL - COmmon Business Oriented Language.

Developed in 1959.

 Designed to be common to many different computers.

• Typically used for business applications.

PL 2019

34

BASIC - Beginner's All-purpose Symbolic Instruction Code.

- Developed at Dartmouth College in mid 1960s.
- Developed as a simple language for students to write programs with which they could interact through terminals.

C

- Developed by Bell Laboratories in the early 1970s.
- Provides control and efficiency of assembly language while having third generation language features.
- Often used for system programs.
- UNIX is written in C.

25

19

Simula

- First object-oriented language •
- Developed by Ole Johan Dahl in the 1960s.

Smalltalk

- First purely object-oriented language.
- Developed by Xerox in mid-1970s. •
- · Still in use on some computers.

37

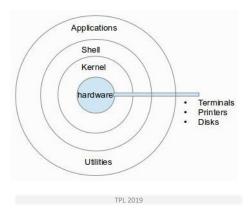
C++

- It is C language with additional features.
- Widely used for developing system and application software.
 - Graphical user interfaces can be developed easily with visual programming tools.

TPL 2019

JAVA

- An object-oriented language similar to C++ that eliminates lots of C++'s problematic features
- Allows a web page developer to create programs for applications, called applets that can be used through a browser.
- Objective of JAVA developers is that it be machine, platform and operating system independent.


Scripting Languages

Scripting Languages

- JavaScript and VBScript
- Php and ASP
- Perl and Python

Command Languages

 sh, csh, bash (shell programming – hardware-kernal – shell – user)

Text processing Languages

LaTex, PostScript

- HTML Hyper Text Markup Language.
- Used on the Internet and the World Wide Web (WWW).
- Web page developer puts brief codes called tags in the page to indicate how the page should be formatted.

41

IPL 2019

12

About Programming languages

- When it comes to mechanics of the task i.e. The activity of programming, learning use a programming language is in many ways like learning to speak a human language
- In both kind of languages one has to learn new vocabulary, syntax and semantics (new words, sentence structure and meaning)}
- Both kind of language require considerable practice to gain proficiency.

About Programming languages

- Computer languages lack ambiguity and vagueness (uncertainty/indefiniteness)
- In English sentences such as "Take a pinch of salt" (How much is a pinch?) or "Republicans grill IRS Chief over lost emails" or "look at the dog with one eye" or "I saw a man with a binoculars"
- In a programming language a sentence either means one thing or it means nothing

12

L 2019

About Programming languages

- Now: Life cycle (human) cost is more important - Ease of designing, coding
 - Debugging
 - Maintenance
 - Reusability

Characteristics (attributes) of programming languages

- Writability: The quality of a language that enables a programmer to use it to express a computation clearly, correctly, concisely, and quickly.
- Readability: The quality of a language that enables a programmer to understand and comprehend the nature of a computation easily and accurately.

TPL 2019

Characteristics (attributes) of programming languages ...

- Orthogonality: The quality of a language that features provided have as few restrictions as possible and be combinable in any meaningful way.
- Reliability: The quality of a language that assures a program will not behave in unexpected or disastrous ways during execution.
- Maintainability: The quality of a language that eases errors can be found and corrected and new features added.

Characteristics (attributes) of programming languages ...

- Generality: The quality of a language that avoids special cases in the availability or use of constructs and by combining closely related constructs into a single more general one.
- Uniformity: The quality of a language that similar features should look similar and behave similar.
- Extensibility: The quality of a language that provides some general mechanism for the user to add new constructs to a language.

47

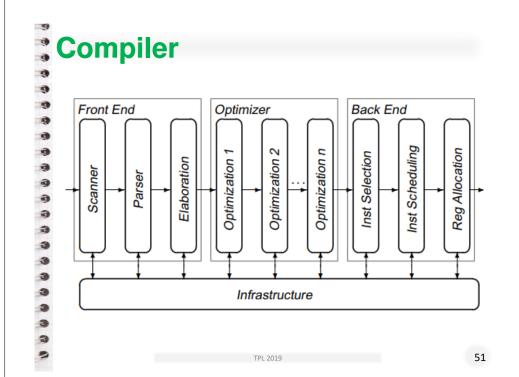
19

Characteristics (attributes) of programming languages ...

- Standardability: The quality of a language that allows programs written to be transported from one computer to another without significant change in language structure.
- Implementability: The quality of a language that provides a translator or interpreter can be written. This can address to complexity of the language definition.

Programming

Concept of Obeign problem (Obeign program logic) condition


Editor (Edit)

Programmer's responsibility

Failure Freprocessor

Preprocessor

Pre

Activity/Assignment

Write 5 computer programs in five different programming languages to find the roots of the quadric equation $ax^2+bx+c=0$ where x represents a variable or an unknown, and a, b, and c are constants. Your program should run until user ask to exit.

Hint: The following equation shows the solutions of the quadratic equation

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$