
Theory of Programming

Languages

Budditha Hettige

Department of Computer Engineering

TPL 2019

REGULAR EXPRESSION

Natural Language Processing 2

Regular expression

• Regular expressions are a powerful string

manipulation tool

• All modern languages have similar library

packages for regular expressions

• Use regular expressions to:

– Search a string (search and match)

– Replace parts of a string (sub)

– Break strings into smaller pieces

(split)

3

Python’s

Regular Expression Syntax

• Most characters match themselves

The regular expression “test” matches the string
‘test’, and only that string

• [x] matches any one of a list of characters

“[abc]” matches ‘a’,‘b’,or ‘c’

• [^x] matches any one character that is not

included in x

“[^abc]” matches any single character except
‘a’,’b’,or ‘c’

4

Python’s

Regular Expression Syntax

• “.” matches any single character

• Parentheses can be used for grouping

“(abc)+” matches ’abc’,

‘abcabc’, ‘abcabcabc’, etc.

• x|y matches x or y

“this|that” matches ‘this’ and

‘that’, but not ‘thisthat’.

5

Python’s

Regular Expression Syntax

• x* matches zero or more x’s

“a*” matches ’’, ’a’, ’aa’, etc.

• x+ matches one or more x’s

“a+” matches ’a’,’aa’,’aaa’, etc.

• x? matches zero or one x’s

“a?” matches ’’ or ’a’

• x{m, n} matches i x‘s, where m<i< n

“a{2,3}” matches ’aa’ or ’aaa’

6

Python’s

Regular Expression Syntax

• “\d” matches any digit; “\D” any non-digit

• “\s” matches any whitespace character; “\S”

any non-whitespace character

• “\w” matches any alphanumeric character;

“\W” any non-alphanumeric character

• “^” matches the beginning of the string; “$”

the end of the string

• “\b” matches a word boundary; “\B” matches

a character that is not a word boundary

7

Basic Regular Expression Patterns

8

Basic Regular Expression Patterns

9

Basic Regular Expression Patterns

10

Advanced Operators

11

More

12

Search and Match

• The two basic functions are re.search and re.match
– Search looks for a pattern anywhere in a string

– Match looks for a match staring at the beginning

• Both return None (logical false) if the pattern isn’t found
and a “match object” instance if it is
>>> import re

>>> pat = "a*b”

>>> re.search(pat,"fooaaabcde")

<_sre.SRE_Match object at 0x809c0>

>>> re.match(pat,"fooaaabcde")

>>>

Q: What’s a match object?

• A: an instance of the match class with the details of the
match result

>>> r1 = re.search("a*b","fooaaabcde")

>>> r1.group() # group returns string
matched

'aaab'

>>> r1.start() # index of the match
start

3

>>> r1.end() # index of the match end

7

>>> r1.span() # tuple of (start, end)

(3, 7)

What got matched?

• Here’s a pattern to match simple email addresses

\w+@(\w+\.)+(com|org|net|edu)

>>> pat1 = "\w+@(\w+\.)+(com|org|net|edu)"

>>> r1 = re.match(pat,"finin@cs.umbc.edu")

>>> r1.group()

'finin@cs.umbc.edu’

• We might want to extract the pattern parts, like the

email name and host

What got matched?

• We can put parentheses around groups we want to
be able to reference

>>> pat2 = "(\w+)@((\w+\.)+(com|org|net|edu))"

>>> r2 = re.match(pat2,"finin@cs.umbc.edu")

>>> r2.group(1)

'finin'

>>> r2.group(2)

'cs.umbc.edu'

>>> r2.groups()

r2.groups()

('finin', 'cs.umbc.edu', 'umbc.', 'edu’)

• Note that the ‘groups’ are numbered in a preorder
traversal of the forest

What got matched?

• We can ‘label’ the groups as well…

>>> pat3

="(?P<name>\w+)@(?P<host>(\w+\.)+(com|org|

net|edu))"

>>> r3 = re.match(pat3,"finin@cs.umbc.edu")

>>> r3.group('name')

'finin'

>>> r3.group('host')

'cs.umbc.edu’

• And reference the matching parts by the labels

More re functions

• re.split() is like split but can use patterns
>>> re.split("\W+", “This... is a test,

short and sweet, of split().”)

['This', 'is', 'a', 'test', 'short’,

'and', 'sweet', 'of', 'split’, ‘’]

• re.sub substitutes one string for a pattern
>>> re.sub('(blue|white|red)', 'black', 'blue

socks and red shoes')

'black socks and black shoes’

• re.findall() finds al matches
>>> re.findall("\d+”,"12 dogs,11 cats, 1

egg")

['12', '11', ’1’]

Compiling regular expressions

• If you plan to use a re pattern more than once, compile
it to a re object

• Python produces a special data structure that speeds
up matching

>>> capt3 = re.compile(pat3)

>>> cpat3

<_sre.SRE_Pattern object at 0x2d9c0>

>>> r3 =
cpat3.search("finin@cs.umbc.edu")

>>> r3

<_sre.SRE_Match object at 0x895a0>

>>> r3.group()

'finin@cs.umbc.edu'

Pattern object methods

Pattern objects have methods that parallel the re
functions (e.g., match, search, split, findall, sub), e.g.:

>>> p1 = re.compile("\w+@\w+\.+com|org|net|edu")

>>> p1.match("steve@apple.com").group(0)

'steve@apple.com'

>>> p1.search(”Email steve@apple.com
today.").group(0)

'steve@apple.com’

>>> p1.findall("Email steve@apple.com and
bill@msft.com now.")

['steve@apple.com', 'bill@msft.com’]

>>> p2 = re.compile("[.?!]+\s+")

>>> p2.split("Tired? Go to bed! Now!! ")

['Tired', 'Go to bed', 'Now', ’ ']

email
address

sentence
boundary

Exercise

• Write regular expressions for the following languages

– the set of all alphabetic strings.

– the set of all lowercase alphabetic strings ending in a b.

– the set of all strings with two consecutive repeated
words

• Example
‘Humbert Humbert’ and ‘the the’ but not ‘the bug’ or ‘the big
bug’).

21

FINITE-STATE AUTOMATA

Natural Language Processing 22

FSA

• Any regular expression can be implemented

as a finite-state automaton

• Both regular expressions and finite-state

automata can be used to described regular

languages

23

Using an FSA to Recognize

24

Automaton

• automaton (finite automaton, finite-state

automaton, or FSA) recognizes a set of

strings

• Example

– Automaton has number of states

– Start State

– End State

– Accepting state,

– transitions

25

Deterministic Finite Automaton

(DFA)

26

Finite Automation

String

Input Tape

“Accept”
or

“Reject”

Output

27

Transition Graph

•

initial
state

accepting
state

state

transition

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

28

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

},{ ba

For every state, there is a transition
for every symbol in the alphabet

Alphabet

DFA

29

Initial Configuration

•

1q 2q 3q 4qa b b a

5q

a a bb

ba,
Input String

a b b a

ba,

0q

Initial state

Input Tape

head

30

Scanning the Input

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b b a

ba,

31

Scanning the Input

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b b a

ba,

32

Scanning the Input

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b b a

ba,

33

0q 1q 2q 3q 4qa b b a

accept

5q

a a bb

ba,

a b b a

ba,

Input finished

Scanning the Input

34

1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b a

ba,

0q

Input String

A Rejection Case

Fall 2006 Costas Busch - RPI
35

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b a

ba,

A Rejection Case

36

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

a b a

ba,

A Rejection Case

37

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

Reject

a b a

ba,

Input finished

A Rejection Case

38

1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

0q

)( Tape is empty

reject

Input Finished

Another Rejection Case

39

Language Accepted:

 abbaL 

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

Accepted

40

Another Example

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

 abbaabL ,,

Accept
state

Accept
state

Accept
state

41

)(

Empty Tape

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

accept

Input Finished

N
at

u
ra

l L
an

gu
ag

e
P

ro
ce

ss
in

g

42

Another Example

a

b ba,

ba,

0q 1q 2q

Accept
state

trap state

N
at

u
ra

l L
an

gu
ag

e
P

ro
ce

ss
in

g

43

a

b ba,

ba,

0q 1q 2q

a ba

Input String

44

a

b ba,

ba,

0q 1q 2q

a ba

45

a

b ba,

ba,

0q 1q 2q

a ba

46

a

b ba,

ba,

0q 1q 2q

a ba

accept

Input finished

Natural Language Processing 47

a

b ba,

ba,

0q 1q 2q

ab b

A rejection case

Input String

48

a

b ba,

ba,

0q 1q 2q

ab b

49

a

b ba,

ba,

0q 1q 2q

ab b

50

a

b ba,

ba,

0q 1q 2q

ab b

reject

Input finished

51

Language Accepted:

}0:{  nbaL n

a

b ba,

ba,

0q 1q 2qN
at

u
ra

l L
an

gu
ag

e
P

ro
ce

ss
in

g

52

Another Example

0q 1q

1

1

}1{Alphabet:

Language Accepted:

even} is and :{ * xxxEVEN 

},111111,1111,11,{ 

N
at

u
ra

l L
an

gu
ag

e
P

ro
ce

ss
in

g

State-transition table

• Represent an automaton

• Example

53

Finite automaton

54

A deterministic algorithm

55

Fail State

56

Language Example

• A finite-state automaton for English nominal

inflection

57

Language Example

• A finite-state automaton for English verbal

inflection

58

Exercise

• Write regular expressions for the following languages:

59

TPL 2019

Syntax and CFG

Overview

• What is syntax of a language

• Part of Speech

• Syntax representation

• Context free Grammar

• English Language syntax

• Sinhala Language syntax

• Syntax analysis

• Syntax generation

• Applications (Syntax processing)

7/11/2015 Budditha Hettige (budditha@yahoo.com) 62

Syntax

• Syntax is the study of formal relationships
between words

• The word syntax comes from the Greek
‘syntaxis’ meaning ‘setting out together or
arrangement’

7/11/2015 Budditha Hettige (budditha@yahoo.com) 63

Part of Speech Tagging

• Words are traditionally grouped into
equivalence classes called

– parts of speech

– word classes

– morphological classes

– lexical tags.

• The part of speech for a word gives a
significant amount of information about the
word and its neighbors

7/11/2015 Budditha Hettige (budditha@yahoo.com) 64

English Part of Speech

• ADJECTIVE - modifies a noun.

Examples: yellow, pretty, useful

Adjectives have three degrees: Positive, Comparative, and

Superlative.

Example: old, older, oldest

• ARTICLE - specifies whether the noun is specific or a

member of a class.

Examples: a, an, the

• ADVERB - modifies a verb or an adjective. Many adverbs

have the suffix -ly.

Examples: very, extremely, carefully

7/11/2015 Budditha Hettige (budditha@yahoo.com) 65

http://www.scientificpsychic.com/grammar/enggramg.html#DEFADJ
http://www.scientificpsychic.com/grammar/enggramg.html#DEFART
http://www.scientificpsychic.com/grammar/enggramg.html#DEFADV

English Part of Speech

• CONJUNCTION - joins components of a
sentence or phrase.

Examples: and, but, or

• INTERJECTION - is used for exclamations.
Examples: Oh!, Aha!

• NOUN - names an object or action. Common
nouns refer to ordinary things. Proper nouns are
usually capitalized and refer to persons, specific
things or specific places.

Examples: mouse, fire, Michael

7/11/2015 Budditha Hettige (budditha@yahoo.com) 66

http://www.scientificpsychic.com/grammar/enggramg.html#DEFCONJ
http://www.scientificpsychic.com/grammar/enggramg.html#DEFINT
http://www.scientificpsychic.com/grammar/enggramg.html#DEFNOUN

English Part of Speech

• PREPOSITION - indicates relationship or relative position of

objects.

Examples: in, about, toward

• PRONOUN - is used in place of a noun. Personal

pronouns are used to refer to persons. Interrogative

pronouns introduce questions. Demonstrative

pronouns refer to a previously mentioned object or

objects. Relative pronouns introduce clauses.

Examples: he, this

• VERB - specifies an action or links the subject to a

complement. The tense of a verb indicates the time when

the action happened, e.g., past, present, of future.

Examples: take, is, go, fire

7/11/2015 Budditha Hettige (budditha@yahoo.com) 67

http://www.scientificpsychic.com/grammar/enggramg.html#DEFPREP
http://www.scientificpsychic.com/grammar/enggramg.html#DEFPRON
http://www.scientificpsychic.com/grammar/enggramg.html#DEFACTV

Part of Speech Tagging

• Part-of-speech tagging (or just tagging for
short) is the process of assigning a part-of-
speech or other lexical class marker to each
word in a corpus

• book is ambiguous. That is, it has more
than one possible usage and part of speech

7/11/2015 Budditha Hettige (budditha@yahoo.com) 68

Degree of ambiguity

7/11/2015 Budditha Hettige (budditha@yahoo.com) 69

Tag sets for English

7/11/2015 Budditha Hettige (budditha@yahoo.com) 70

Tag sets for English

7/11/2015 Budditha Hettige (budditha@yahoo.com) 71

Sinhala Part of Speech

7/11/2015 Budditha Hettige (budditha@yahoo.com) 72

Tagging algorithms

• Rule-based taggers and Stochastic taggers.

• Rule-based taggers generally involve a large

database of hand-written disambiguation rule

which specify

– ENGTWOL

• Stochastic taggers generally resolve tagging

ambiguities by using a training corpus to

compute the probability of a

– HMM tagger

7/11/2015 Budditha Hettige (budditha@yahoo.com) 73

Rule based Tagging

• earliest algorithms for automatically assigning

part-of-speech were based on a two-stage

architecture

• The first stage used a dictionary to assign each

word a list of potential parts of speech

• The second stage used large lists of hand-

written disambiguation rules to winnow down

this list to a single part-of-speech for each word.

• The ENGTWOL tagger is based on the same

two stage architecture

7/11/2015 Budditha Hettige (budditha@yahoo.com) 74

ENGTWOL Results

7/11/2015 Budditha Hettige (budditha@yahoo.com) 75

Transformation-Based Tagging

• TBL is based on rules that specify what tags
should be assigned to what words

• TBL is a machine learning technique, in
which rules are automatically induced from
the data.

• TBL is a supervised learning technique; it
assumes a pre-tagged training corpus

7/11/2015 Budditha Hettige (budditha@yahoo.com) 76

Other Issues

• Multiple tags and multiple words

• Tag indeterminacy arises when a word is
ambiguous between multiple tags and it is
impossible or very difficult to disambiguate.

– Some taggers allow the use of multiple tags

• The second issue concerns multi-part
words

– allow prepositions like ‘in terms of’ to be treated
as a single word by adding numbers to each tag

• Unknown words

7/11/2015 Budditha Hettige (budditha@yahoo.com) 77

Context-free grammar

Constituency

• The fundamental idea of constituency is that

groups of words may be CON- STITUENT

have as a single unit or phrase, called a

constituent

• Example

– noun phrase often acts as a unit

• Context-free grammars allow us to model

these constituency facts

7/11/2015 Budditha Hettige (budditha@yahoo.com) 79

preposed or postposed

constructions

7/11/2015 Budditha Hettige (budditha@yahoo.com) 80

English Noun Phrase

7/11/2015 Budditha Hettige (budditha@yahoo.com) 81

Context-Free Grammar

• Most commonly used mathematical system

for modeling constituent structure

• Phrase-Structure Grammar

7/11/2015 Budditha Hettige (budditha@yahoo.com) 82

Context-free grammar
• Consists of a set of rules or productions

• Context free rules can be hierarchically
embedded

• Symbols that correspond to words in the
language (‘the’, ‘nightclub’) are called terminal
symbols

• The symbols that express clusters or
generalizations of these are called
nonterminals

• In each context-free rule, the item to the right of
the arrow (→) is an ordered list of one or more
terminals and nonterminals

7/11/2015 Budditha Hettige (budditha@yahoo.com) 83

Example

7/11/2015 Budditha Hettige (budditha@yahoo.com) 84

• String a flight can be derived from the
nonterminal NP

• Sequence of rule expansions is called a
derivation of the string of words

• Represent a derivation by a parse tree
• bracketed notation is another way to

represent a parse tree

NLE 85

A more formal definition
• A CFG is a 4-tuple <N,,P, S> consisting of

NLE 86

What context free means

NLE 87

An example lexicon

NLE 88

An example grammar

NLE 89

A simple parse tree

Sentence-level Constructions

• Consistency we will continue to focus on

sentences

7/11/2015 Budditha Hettige (budditha@yahoo.com) 90

NLE 91

Basic types of sentences

NLE 92

Recursion

• Nominal  Nominal PP (PP) (PP)

– Is an example of RECURSIVE rule

• Other examples:

– NP  NP PP

– VP  VP PP

• Recursion a powerful device, but could have

bad consequences (see lectures on parsing)

NLE 93

Recursion and VP attachment

NLE 94

Coordination

• NP  NP and NP

– John and Mary left

• VP  VP and VP

– John talks softly and carries a big stick

• S  S and / but / S

– Kim is a lawyer but Sandy is reading medicine.

• In fact, probably English has a

– XP  XP and XP

rule

Write suitable CFG for English NP

7/11/2015 Budditha Hettige (budditha@yahoo.com) 95

Write suitable CFG for English VP

7/11/2015 Budditha Hettige (budditha@yahoo.com) 96

