LI B BB - T - O O

Theory of Programming
Languages

Budditha Hettige
Department of Computer Engineering

TPL 2019

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A MverAVEmuMD THROUGH 200 MB OF EMAILS LOOKING FOR
NEw SKILL I ConNCoCT | | HER ON VACATION | Smmmwmmc AN ADDRESS!

ELABORATE. RANTASY |
SCENARI0S WHERE (T ~— IT5 HOPELESS)
LETS ME SAVE THE DAY. ﬁ
T KNOW REGUAR
e || (T

58 Jo

\QJ I <//
5 R oje R s T

REGULAR EXPRESSION

VOOV OOPOOOLOIOVOIIBDLL G @ @

atural Language Processing

VOOPPWOPOOOPIVDVDIIIVDIDD 9

Regular expression

* Regular expressions are a powerful string
manipulation tool

» All modern languages have similar library
packages for regular expressions

» Use regular expressions to:
—Search a string (search and match)
—Replace parts of a string (sub)

—Break strings into smaller pieces
(split)

L, Python's
* Regular Expression Syntax

 Most characters match themselves

The regular expression “test” matches the string
‘test’, and only that string

 [X] matches any one of a list of characters
“[abc]” matches ‘a’, ‘b’ ,or ‘c’
* [*X] matches any one character that is not

Included In X

“[*abc]” matches any single character except
‘a’,"b",or ‘c’

VOOPWOOPOOQOLOVOVOVIOGISI O

L Python’s
* Regular Expression Syntax

» “." matches any single character

» Parentheses can be used for grouping
“(abc)+” matches " abc’,
‘abcabce’, ‘abcabcabc’, etc.

* X|y matches x ory

“this|that” matches *this’ and
‘that’, butnot ‘thisthat’.

VOOPOOOOQOLIOVOVIBIIBVBBW

L Python’s
* Regular Expression Syntax

* X* matches zero or more x’'s
‘a*” matches 7, ’7a’, "aa’, etc.
* X+ matches one or more x’'s

“at” matches ’"a’,’aa’,’ aaa’, etc.
X? matches zero or one X's

“a?” matches '’ or " a’
* x{mM, n} matches | x's, where m<i< n
“a{2,3}" matches "aa’ or "aaa’

VOOPOOOOQOLIOVOVIBIIBVBBW
[

. Python’s

* Regular Expression Syntax

» “\d” matches any digit; \D” any non-digit

* “\s” matches any whitespace character; \S”
any non-whitespace character

* “\w’ matches any alphanumeric character;
“\W” any non-alphanumeric character

“N matches the beginning of the string; “$”
the end of the string

* “\b” matches a word boundary; “\B” matches
a character that is not a word boundary

VOOPPOOOOQOPLOIOVIBGIBSBIW
[

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Basic Regular Expression Patterns

RE Example Patterns Matched

/woodchucks / “interesting links to woodchucks and lemurs”

fa/ “Mary Ann stopped by Mona's”

/Claire gsays, /| Dagmar, my gift please Claire says,

/song/ “all our pretty songs’

Ay “You've left thm‘glar behind again! " said Nori

RE Match Example Patterns

/ [wW] oodchuck/ | Woodchuck or woodchuck | “Woodchuck”™

/ [abc] / ‘a’,'b’, or'c’ “In womini, in soldati”

/[1234567890] /| any digit “plenty of 7 to 5"
Figure 2.1 The use of the brackets [] to specify a disjunction of characters.

VOOPPOROPOQOPIVDODIIOIDPD G @

Basic Regular Expression Patterns

RE Match Example Patterns Matched

/ [A-Z] /| an uppercase letter | “we should call it ‘Drenched Blossoms’”

/ [a-z] /| alowercase letter | “my beans were impatient to be hoed!”

/ [0-9]1 /| asingle digit “Chapter 1: Down the Rabbit Hole”
Figure 2.2 The use of the brackets [] plus the dash - to specify a range.

RE Match (single characters) | Example Patterns Matched
["A-Z] | notan uppercase letter "Oyfn pripetchik”
["Ss] neither 'S’ nor ‘s’ “I have no exquisite reason for't”
[7\] not a period “our resident Djinn”
[e”] either ‘e’ or ° ™’ “look up ~ now”
a"b the pattern ‘a”b’ “look up a” b now”

Figure 2.3 Uses of the caret © for negation or just to mean ~

VOOPPOROPOQOPIVDODIIOIDPD G @

Basic Regular Expression Patterns

RE Match Example Patterns Matched
woodchucks? | woodchuck or woodchucks | “woodchuck”
colou?r color or colour “colour”

Figure 2.4 The question-mark ? marks optionality of the previous expres-

sion.
RE Match Example Patterns
/beg.n/| any character between ‘beg’ and ‘'n’ | begin, beg'n, begun

Figure 2.3 The use of the period . to specify any character.

10

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Advanced Operators

RE| Expansion Match Example Patterns

\d| [0-9] any digit Party_of 5

\D| [T0-9] any non-digit Blue_moon

\w| [a-zA-Z0-9_ 1| any alphanumeric or space | Daiyu

\W I [7\w] a non-alphanumeric 1111

\s| [_\r\t\n\f] whitespace (space, tab)

\S| [T\s] Non-whitespace in Concord
Figure 2.6 Aliases for common sets of characters.

VOOPPORPOPOVOPLIVDVIIIOIDP O

More

{n,}

RE Match

* zero or more occurrences of the previous char or expression

+ one or more occurrences of the previous char or expression

? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression

{n,m} | from n to m occurrences of the previous char or expression

at least n occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.
RE Match Example Patterns Matched
N\ * an asterisk “*” "KXA*P*L*A*N"
\. a period ".” “Dr. Livingston, I presume”
\7? a question mark “Would you light my candle?”
\n a newline
\t a tab

Figure 2.8 Some characters that need to be backslashed.

12

‘:ESearch and Match

L

°® . .
& 1he two basic functions are re.search and re.match

— Search looks for a pattern anywhere in a string
— Match looks for a match staring at the beginning

Both return None (logical false) if the pattern isn’t found
and a “match object” instance if it is
>>> 1mport re

>>> pat = "a*b”
>>> re.search (pat, "fooaaabcde")
< sre.SRE Match object at 0x809c0>
>>> re.match (pat, "foocaaabcde™)
>>>

VOO OOPOEOQOLQLOLODOVOSII

VOOPPOOPOOQOLIVDOVIIIVIDPIS I

Q: What’s a match object?

 A: an instance of the match class with the details of the
match result

>>> r]l = re.search("a*b", "fooaaabcde")

>>> rl.group() # group returns string
matched

'aaab'

>>> rl.start() # index of the match
start

3

>>> r]l.end () # index of the match end

7

>>> rl.span/() # tuple of (start, end)

(3, 7)

VOOPPOOPOOLOPIOVDIIIVIYD O 9

What got rmatched?

* Here’s a pattern to match simple email addresses
\w+@(\w+\.)+(com]|org|net|edu)

>>> patl = "\w+@ (\w+\.)+ (com|org|net|edu)"
>>> rl = re.match(pat,"finin@cs.umbc.edu")
>>> rl.group ()

'"fininlcs.umbc.edu’

* We might want to extract the pattern parts, like the
email name and host

‘EWhat got rmatched?

VOOPPOOOOQOPLOIOVIBGIBSBIW

* We can put parentheses around groups we want to
be able to reference

>>> pat2 = " (\w+)Q ((\w+\.)+ (com|org|net]|edu))"
>>> r72 = re.match (pat?,"fininlcs.umbc.edu")
>>> r2.group (1)

'"finin'

>>> r2.group (2)

'cs.umbc.edu'

>>> r2.groups ()

r2.groups ()

('finin', 'cs.umbc.edu', 'umbc.', 'edu’)

* Note that the ‘groups’ are numbered in a preorder
traversal of the forest

':EWhat got ratched?

* We can ‘label’ the groups as well...

>>> pat3
=" (?P<name>\w+) @ (?P<host> (\w+\.)+ (com|org]
net|edu))"

>>> r3 = re.match (pat3,"finindcs.umbc.edu")

>>> r3.group ('name')
'"finin'
>>> r3.group ('host')

'cs.umbc.edu’

* And reference the matching parts by the labels

VOOPOOOOQOLIOVOVIBIIBVBBW

VOOPPWOPOOOPIVDVDIIIVDIDD 9

More re functions

 re.split() is like split but can use patterns

>>> re.split ("\W+", “This... is a test,

short and sweet, of split().”)
['This', 'is', 'a', 'test', 'short’,
'and', 'sweet', 'of', 'split’, ‘']
* re.sub substitutes one string for a pattern

>>> re.sub (' (blue|whitel|red)', 'black',
socks and red shoes')

'black socks and black shoes’

+ re.findall() finds al matches
>>> re.findall ("\d+”,"12 dogs,1ll cats,

egg")
|:|12', 1111, /l’]

1

'"blue

VOOPPWOPOOOPIVDVDIIIVDIDD 9

Compiling regular expressions

* If you plan to use a re pattern more than once, compile
It to a re object

 Python produces a special data structure that speeds
up matching
>>> capt3 = re.compille (pat3)
>>> cpat3
< sre.SRE Pattern object at 0x2d9c0>

>>> r3 =
cpat3.search ("finin@cs.umbc.edu")

>>> 13

< sre.SRE Match object at 0x895a0>
>>> r3.group ()

'"finin@cs.umbc.edu'

VOOV OOOOOLIVDOVDI IV I P G @

Pattern object methods

Pattern objects have methods that parallel the re
functions (e.g., match, search, split, findall, sub), e.g.:

>>> pl = re.compile("\w+@\w+\.+com|org|net|edu”)
>>> pl.match("steve@apple.com").group(0)

'steve@apple.com’ _
>>> pl.search(’Email steve@apple.com ﬁ e;"a"
today.").group(0) address

'steve@apple.com’

>>> pl.findall("Email steve@apple.com and
bill@msft.com now.")

sentence

— ile(".?! "
>>> p2 = re.compile("[.?!]+\s+") boundary

['steve@apple.com’, 'bill@msft.com’]
>>> p2.split("Tired? Go to bed! Now!! %

['Tired', 'Go to bed', 'Now', " ']

T EXxercise

Write regular expressions for the following languages
— the set of all alphabetic strings.
— the set of all lowercase alphabetic strings ending in a b.

— the set of all strings with two consecutive repeated
words

Example
‘Humbert Humbert’ and ‘the the’ but not ‘the bug’ or ‘the big

bug’).

VOOPOOOOOLOIVDODII IB,99 90

21

VOOV OPOQOPLIVOVDOIIOGIDY G a0

fomol
Sy
OWO

FINITE-STATE AUTOMATA

22

VOOPPOROPOQOPIVDODIIOIDPD G @

FSA

* Any regular expression can be implemented
as a finite-state automaton

* Both regular expressions and finite-state
automata can be used to described regular

languages

regular
expressions

finite “L-------- = regular
automata languages

23

VOOV OOOOOLIVDOVDI IV I P G @

Using an FSA to Recognize

After a while, with the parrot’s help, the Doctor got to learn the
language of the animals so well that he could talk to them himself

and understand everything they said.
Hugh Lofting, The Story of Doctor Dolittle

baa!
baaa!
baaaa!

baaaaa!

baaaaaa!

24

VOOPPWOPOOOPIVDVDIIIVDIDD 9

Automaton

« automaton (finite automaton, finite-state
automaton, or FSA) recognizes a set of

strings
 Example
— Automaton has number of states

— Start State
— End State

b a a g !
— Accepting stat
— transitions 0 o 0 0

25

J beterministic Finite Automaton

s (DFA)

Input Tape

String

VOOPWOOPOQOLOVIOVOVIOGISIS O

Finite Automation

Output

“Accept”
or
“Reject”

26

* Transition Graph

initial accepting
state state

transition

state

VOOPPOOOOQOPLOIOVIBGIBSBIW

27

VOOV ORPOPOVOPLIVDVIIOIOIDP 9@

DFA
Alphabet Z — {Cl,b} a’b

For every state, there is a transition
for every symbol in the alphabet

28

VOOPPOOOPOQOPIVDODIIOIDPD G @

Initial Configuration

hfad

Input Tape

Initial state

29

iScanning the Input

?

VOOPPOOOOQOPLOIOVIBGIBSBIW

30

iScanning the Input

a

—» G

VOOPPOOOOQOPLOIOVIBGIBSBIW

31

iScanning the Input

alb|b|a

VOOPPOOOOQOPLOIOVIBGIBSBIW

accept

!

Input finished

alb|b|a

Scanning the Input

ettt RRORROOOOAOERN

33

VOOPPOOPOOLOPIOVDIIIVIYP 99

A Rejection Case

34

35

A Rejection Case

PP PO LR eeRRRCRRRRROA0G0 N

36

A Rejection Case

ettt RRORROOOOAOERN

37

o,
(V)]
(1°,
J
[-
©
afd
O
.M.l.. S e
o |9 3
< |o|

ettt RRORROOOOAOERN

VOOPPOOPOOLOPIOVDIIIVIYP 99

Another Rejection Case

(1)

Tape is empty

Input Finished

38

39

a,b

bba}

la

Language Accepted:

Accepted

ettt RRORROOOOAOERN

* Another Example

L ={A,ab,abba}

VOOPRPOOPOOQOLLPLOVOVOIISLI LW

40

VOOPOOPOROVDIOIVDOOIIVIVD G an

Empty Tape

(1)

Input Finished

41

VOOPWOOPOROPIOVDIIIVDIDD O

Another Example

42

43

a,b
90 o a.5

a
Input String
a

—p O

- OO B B B

a4

a,b

a,b

Iva

ettt RRORROOOOAOERN

45

a,b

a,b

ettt RRORROOOOAOERN

2 (e
o
Q
o
m Q
Ivb
@)
o o o>
o

- OO B B B

46

VOOV ORPOPOVOPLIVDVIIOIOIDP 9@

a b Input String

b
T

A rejection case

a
8 o

Natural Language Processing

a,b

9%

47

438

(e
G
O
G
Q
Q
&)
S S o
Ivb

ettt RRORROOOOAOERN

49

ettt RRORROOOOAOERN

50

Input finished

v
b

- OO B B B

VOOPPOOPOROLOLOOLOIIVIVD G an

Language Accepted:

L ={a"b:n >0}

a a,b

51

3Another Example
Alphabet: Z {1}

Language Accepted:

EVEN ={x : x X" and x is even}
={A4,11 1111 111111 .. }

VOOPPOOOQROLPLLVDODODDI IO I B¢

52

VOOPPOOPOOLOPIOVDIIIVIYD O 9

State-transition table

* Represent an automaton
 Example

b a a!
aORORO ‘)

ut

In

ﬁ

S eSS S —o
S W W S|
S S S 9|—-

53

> Finite automaton

e (: afinite set of N states go,q1,...gn
e X afinite input alphabet of symbols

@ ® go: the start state

9 e F': the set of final states, FF C QO

"o d(q,i): the transition function or transition matrix between states. Given
a state ¢ € Q and an input symbol i € X, d(qg,7) returns a new state
g' € Q. & is thus a relation from Q x Z to O;

qloa&ll.l‘l‘

VOOWOOOGOL AN

54

VOOPPWOPOOOPIVDVDIIIVDIDD 9

A deterministic algorithm

function D-RECOGNIZE(tape, machine) returns accept or reject

index < Beginning of tape
current-state < Initial state of machine

loop
if End of input has been reached then

if current-state 1s an accept state then
return accept
else
return reject
elsif rransition-table[current-state,tape[index/] 1s empty then
return reject

else
current-state < transition-table[current-state,tape[index] |

index < index + 1
end

55

* Fail State

dnaA.aﬂ.lA.o‘,l
(£

=
(£

=]
o

p==]
oS
©

VOOWOOVEOQOQOLOIOQOW®

56

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Language Example

A finite-state automaton for English nominal
Inflection

reg—noun plural (—s)

\ irreg—pl—-noun /

irreg—sg—noun

57

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Language Example

A finite-state automaton for English verbal
Inflection

irreg—past—verb—form

preterite (—ed)

reg—verb—stem
irreg—verb—stem

58

*Exercise

LB - - - R - I

Write regular expressions for the following languages:

c T 8.

S

®

-

L

the set of all alphabetic strings.
the set of all lowercase alphabetic strings ending in a b.
the set of all strings with two consecutive repeated words (for example
‘Humbert Humbert’ and ‘the the’ but not ‘the bug’ or ‘the big bug’).
the set of all strings from the alphabet a, b such that each a is immedi-
ately preceded and immediately followed by a b.

all strings which start at the beginning of the line with an integer (i.e.
1,2,3...10...10000...) and which end at the end of the line with a word.
all strings which have both the word grotto and the word raven in them.
(but not, for example, words like grottos that merely contain the word
grotto).

write a pattern which places the first word of an English sentence in a
register. Deal with punctuation.

59

TPL 2019

PO OOORRRRRRRROARA0G N

Syntax and CFG

PPOOOOORORRORRAO0RA00 0

VOOPPWOPOOOPIVDVDIIIVDIDD 9

Qverview

* What Is syntax of a language

» Part of Speech

* Syntax representation

« Context free Grammar

* English Language syntax

» Sinhala Language syntax

» Syntax analysis

« Syntax generation

» Applications (Syntax processing)

7/11/2015 Budditha Hettige (budditha@yahoo.com) 62

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Syntax

« Syntax Is the study of formal relationships
between words

* The word syntax comes from the Greek
‘syntaxis’ meaning ‘setting out together or
arrangement

Sentence

v w
N /\

the man Verb

| /\

took the book

7/11/2015 Budditha Hettige (budditha@yahoo.com)

63

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Part of Speech Tagging

* Words are traditionally grouped into
equivalence classes called
— parts of speech
— word classes
— morphological classes
— lexical tags.

* The part of speech for a word gives a
significant amount of information about the
word and its neighbors

7/11/2015 Budditha Hettige (budditha@yahoo.com)

64

‘;EEninsh Part of Speech

ADJECTIVE - modifies a noun.

Examples: yellow, pretty, useful
Adjectives have three degrees: Positive, Comparative, and

Superlative.

Example: old, older, oldest
ARTICLE - specifies whether the noun is specific or a
member of a class.

Examples: a, an, the

ADVERB - modifies a verb or an adjective. Many adverbs

have the suffix -ly.
Examples: very, extremely, carefully

VOOWOPOPOOLPOOGOIOGOBIAQALSS

7/11/2015 Budditha Hettige (budditha@yahoo.com)

65

http://www.scientificpsychic.com/grammar/enggramg.html#DEFADJ
http://www.scientificpsychic.com/grammar/enggramg.html#DEFART
http://www.scientificpsychic.com/grammar/enggramg.html#DEFADV

VOOPPOOPOOLOPIOVDIIIVIYD O 9

English Part of Speech

« CONJUNCTION - joins components of a
sentence or phrase.

Examples: and, but, or

« INTERJECTION - Is used for exclamations.
Examples: Oh!, Ahal

« NOUN - names an object or action. Common
nouns refer to ordinary things. Proper nouns are
usually capitalized and refer to persons, specific
things or specific places.

Examples: mouse, fire, Michael

7/11/2015 Budditha Hettige (budditha@yahoo.com) 66

http://www.scientificpsychic.com/grammar/enggramg.html#DEFCONJ
http://www.scientificpsychic.com/grammar/enggramg.html#DEFINT
http://www.scientificpsychic.com/grammar/enggramg.html#DEFNOUN

VOOPPOOPOOLOPIOVDIIIVIYD O 9

English Part of Speech

« PREPOSITION - indicates relationship or relative position of

objects.
Examples: in, about, toward

« PRONOUN - is used in place of a noun. Personal
pronouns are used to refer to persons. Interrogative
pronouns introduce questions. Demonstrative
pronouns refer to a previously mentioned object or
objects. Relative pronouns introduce clauses.

Examples: he, this

 VERB - specifies an action or links the subject to a
complement. The tense of a verb indicates the time when
the action happened, e.g., past, present, of future.

Examples: take, Is, go, fire

7/11/2015 Budditha Hettige (budditha@yahoo.com)

67

http://www.scientificpsychic.com/grammar/enggramg.html#DEFPREP
http://www.scientificpsychic.com/grammar/enggramg.html#DEFPRON
http://www.scientificpsychic.com/grammar/enggramg.html#DEFACTV

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Part of Speech Tagging

» Part-of-speech tagging (or just tagging for
short) Is the process of assigning a part-of-
speech or other lexical class marker to each

word In a corpus

VB DT NN .
Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner ?

* book is ambiguous. That is, it has more
than one possible usage and part of speech

7/11/2015 Budditha Hettige (budditha@yahoo.com)

68

=
R
9

VOOPPOOVOOVOOIOVIG ISR

Degree of ambiguity

Unambiguous (1 tag) 35,340
Ambiguous (2-7 tags) 4,100
2 tags 3,760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1 (“st1ll)
Figure 8.7 The number of word types in Brown corpus by degree of ambi-
guity (after DeRose (1988)).

7/11/2015 Budditha Hettige (budditha@yahoo.com)

69

iTag sets for English

VOO0 O oOaaa s K AaAAaaas g

7/11/2015

Budditha Hettige (budditha@yahoo.com)

Tag Description Example Tag Description Example
CC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, three || TO “to” to

DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat

FW Foreign word mea culpa VBD Verb, past tense ate

IN Preposition/sub-conj of, in, by VBG Verb, gerund eating

JJ Adjective yvellow VBN Verb, past participle eaten

JJR Adj., comparative bigger VBP Verb, non-3sg pres eat

JIS Adj., superlative wildest VBZ. Verb, 3sg pres eats

LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass [lama WP$ Possessive wh- whose

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Tag sets for English

Tag Description Example Tag Description Example
NNS Noun, plural [lamas WRB Wh-adverb how, where
NNP Proper noun, singular /BM $ Dollar sign $

NNPS Proper noun, plural Carolinas # Pound sign i

PDT Predeterminer all, both “ Left quote (‘for®)
POS Possessive ending K 7 Right quote (Cor”)

PP Personal pronoun 1, you, he (Left parenthesis ([, (, {, <)
PP$ Possessive pronoun your, one’s) Right parenthesis (],), }, >)
RB Adverb quickly, never ||, Comma ,

RBR Adverb, comparative faster Sentence-final punc (. ! ?)
RBS Adverb, superlative fastest Mid-sentence punc (: ;... —-)
RP Particle up, off

7/11/2015

Budditha Hettige (budditha@yahoo.com)

- - B

Sinhala Part of Speech

W N~

Noun - 2000 zi¢.
Verb - 2539 &3¢,
L i

V0o odoaoasnsnnnasgg P

Upasarga — ~=200 ¢ (no direct matching with English grammar)
4. Nipatha — >z z¢ (no direct matching with English grammar)

TAG Description Example VFM Verb Finite Main IEE, ey
NNR Common Noun Root @8d, gd, ¢ VNF Verb Non Finite), Ac84d, AEdE, A
NNM Common Noun 8, ACE, Bvsew], HOVH VP1 Verb Participle 1 AED.IE, BE

Masculine . i)
NNF Common Noun Feminine | 5€ecs] , aSsin VP2 Verb Pal'[!C!ph 2 AGH, HED
NNN Common Noun Neuter | 5g, ©®® VP3 Verb Participle 3 &a
NNPA Proper Noun Animate Se¥micsmend VP4 Verb Participle 4 dcdes), D, meg
NNPI Proper Noun Inanimate | S¥mget, g@ded VNN Verbal Non Finite Noun | 2:88, o8&, a¢®
PRPM Pronoun Masgu_lmc 2, S5, emBm POST Postpositions O, 6(ES, ST
PRPF_ Pronoun Feminine o, 98 CC Conjunctions 8 , ¢, 88, e
PRPN Pronoun Neuter O, B NVB N - Kriva Mul — — =
PRPC Pronoun Common 99, 853 DI..III 1?1 -l'l}El . ula 2288 BSHU), DHE DB
QFNUM | Number Quantifier Om, ecOB JVB Adjective in Kriya Mula | 898; cvne), Oo9® «Lmd),
DET Determiner &®, &, g0, ®v, eahetd], Bae, gt ®SH)
JJ Adjective 30, &8¢ UH Interjection aqend |, s, 8, an
RB Adverb o, 9B FRW Foreign Word Computer
RP Particle © & & G 99, OB, gof SYM Not Classified A4

Budditha Hettige (budditha@yahoo.com) 72

7/11/2015

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Tagging algorithms

 Rule-based taggers and Stochastic taggers.

 Rule-based taggers generally involve a large
database of hand-written disambiguation rule

which specify
— ENGTWOL

« Stochastic taggers generally resolve tagging
ambiguities by using a training corpus to
compute the probabillity of a
— HMM tagger

7/11/2015 Budditha Hettige (budditha@yahoo.com)

73

VOOPPOROPOQOPIVDODIIOIDPD G @

Rule based Tagging

earliest algorithms for automatically assigning
part-of-speech were based on a two-stage

architecture

The first stage used a dictionary to assign each
word a list of potential parts of speech

The second stage used large lists of hand-
written disambiguation rules to winnow down
this list to a single part-of-speech for each word.

The ENGTWOL tagger is based on the same
two stage architecture

7/11/2015 Budditha Hettige (budditha@yahoo.com) 74

VOOPPOOPOOOIVDVDIIIBIP D99

ENGTWOL Results

Word POS Additional POS features

smaller AD]J COMPARATIVE

entire AD]J ABSOLUTE ATTRIBUTIVE

fast ADV SUPERLATIVE

that DET CENTRAL DEMONSTRATIVE SG

all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG

furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG

she PRON PERSONAL FEMININE NOMINATIVE SG3
show V IMPERATIVE VFIN

show V PRESENT -SG3 VFIN

show N NOMINATIVE SG

shown PCP2 SVOO SVO SV

occurred PCP2 SV

occurred V PAST VFIN SV

7/11/2015

Budditha Hettige (budditha@yahoo.com)

75

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Transformation-Based Tagging

 TBL Is based on rules that specify what tags
should be assigned to what words

* TBL Is a machine learning technique, In
which rules are automatically induced from

the data.

 TBL Is a supervised learning technique,; it
assumes a pre-tagged training corpus

7/11/2015 Budditha Hettige (budditha@yahoo.com)

76

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Other Issues

* Multiple tags and multiple words

 Tag Indeterminacy arises when a word IS
ambiguous between multiple tags and it Is
Impossible or very difficult to disambiguate.

— Some taggers allow the use of multiple tags
* The second issue concerns multi-part

words

— allow prepositions like ‘in terms of’ to be treated
as a single word by adding numbers to each tag

e Unknown words

7/11/2015 Budditha Hettige (budditha@yahoo.com) 77

VOOPPOOPOOOLIVDOVDI IO P G @

Sentence

/\
NP
/\ /\
the man Verb

| /\

took the book

Context-free grammar

VOOPPOOPOOLOPIOVDIIIVIYD O 9

Constituency

* The fundamental idea of constituency Is that
groups of words may be CON- STITUENT

have as a single unit or phrase, called a
constituent

 Example
— noun phrase often acts as a unit

« Context-free grammars allow us to model
these constituency facts

7/11/2015 Budditha Hettige (budditha@yahoo.com) 79

- preposed or postposed
> constructions
On September seventeenth, I’d like to fly from Atlanta to Denver

I’d like to fly on September seventeenth from Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the indi-
?vidual words making up the phrase cannot be:

U - - - -

*On September, I'd like to fly seventeenth from Atlanta to Denver
*On I'd like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

VOO OOEOEOD

7/11/2015 Budditha Hettige (budditha@yahoo.com) 80

‘;EEnglish Noun Phrase

VOOPOOOOQOLOIOVVIOGIIBSBBW

<noun phrase> =

"the" <specific proper noun>

<proper noun> |

<non-personal pronoun>

<article> [<adverb>* <adjective>] <noun> |

[<adverb>* <adjective>]
<proper noun-possessive> [<adverb>* <adjective>]
<personal possessive adjective> [<adverb>* <adjective>]

<noun-plural> |

<article> <common noun-possessive>
[<adverb>* <adjective>] <noun>

<"the"> <specific proper noun>
the Atlantic Ocean
the Sahara

<proper noun>
John

America

Dr. Allen

State Street

7/11/2015

<non-personal pronoun>
someone

anyone

this

<article> [<adverb>* <adjective>] <noun>
a very long bridge

the book

the extremely pretty dress

[<adverb>* <adjective>] <noun-plural>
very yellow flowers
books

Budditha Hettige (budditha@yahoo.com)

<noun>

<noun->

81

VOOPPOROPOQOPIVDODIIOIDPD G @

Context-Free Grammar

* Most commonly used mathematical system
for modeling constituent structure

 Phrase-Structure Grammar

MP VP

—>
NP — ART MOUN 5
MP — MNP PP
PP —> P MNP /’/_
WP — VERB NP np Yp
WP — VERB NP PP
ART —> the //\ /\
ART — 3
MO —* telescope det n ¥ np
HMOUM —> man
MOLM —= spider
VERE —> saw a waman shaafs det n
YERB ——= complimented
: — with | |
P — in
P MR

7/11/2015 Budditha Hettige (budditha@yahoo.com)

=

Context-free grammar
@ « Consists of a set of rules or productions

» Context free rules can be hierarchically
embedded

« Symbols that correspond to words in the
language (‘the’, ‘nightclub’) are called terminal
symbols

* The symbols that express clusters or
generalizations of these are called
nonterminals

* In each context-free rule, the item to the right of
the arrow (—) Is an ordered list of one or more
terminals and nonterminals

VOOPRPOOPOOQOLLPLOVOVBIIISTS

7/11/2015 Budditha Hettige (budditha@yahoo.com) 83

VOOPIPORPOPOVOPLIVDVIOIIOIDP 9

Example

Det — a
Det — the
Noun — flight

NP — Det Nominal
NP — ProperNoun

Nominal — Noun | Noun Nominal

e String a flight can be derived from the NP
nonterminal NP /

* Sequence of rule expansions is called a Det Nom
derivation of the string of words

* Represent a derivation by a parse tree Noun

* bracketed notation is another way to

represent a parse tree a flight

[s [np Lpro U] [vp [v prefer] [np [Der @] [Nom [v morning] [y flight]]]]]

7/11/2015 Budditha Hettige (budditha@yahoo.com)

84

R

sA more formal definition

e ACFGis a4-tuple <N,XZ,P, S> consisting of

e a set of non-terminal symbols NV
e a set of terminal symbols
¢ a set of productions P
-4 —=a
—~ A i1s a non-terminal
— (v is a string of symbols from the infinite set of strings

(NUN)*
e a designated start symbol S

VOOPWOOPOQOLOVIOVOVIOGISIS O

NLE

85

VOOV OOOPOQOLIVDOVPI IO P G @

What context free means

All the use of the term context-free really means is that
the non-terminal on the left-hand side of the rule is sitting

over there all by itself.
A—BC

In other words, | can rewrite A as BC, regardless of the
context in which | find the A.

NLE 86

VOOPPOOPOQOLPIVDOVIIBIVGIDIG e

An example lexicon

Noun
Ferb
Adjective

Pronoun
Froper-Noun

Digterminer
Prepaosition
Conjuncrion

AR

L 4

flights | breeze| frip | moming | ...

is | prefer| like | need | wanr | fiy
cheapest | non—stop | first | latest
| other | direct| ...

me | I voul ir| ...

Alaska | Baltimore | Loz Angeles

| Chicago | United | American | ...
the| a| an| this | these | that | ...
from | fo| on| near| ...

and | or| bur| ...

NLE

87

> An example grammar

>
5 = NPIP [+want a2 morming flight
NP — Pronoun I
Proper-Nown Loz Angeles
Dier Nominal a + fight
Nomunal — Nown Nominal morming + flight
Noun flights
FP — TFerb do
| TFerb NP want + a flight
| Terb NP PP leave + Boston + in the morming
| Terb PP leaving + on Thursday
PP — Preposition NP from + Los Angeles
-

NLE

88

VOOV OOOOOLIVDOVDI IV I P G @

A simple parse tree

5

A

NP VP

NP

/J\-nm
N

Pro Verbh Det Noun Noun

[prefer .'Jl mormng fight

NLE

89

VOOPPWOPOOOPIVDVDIIIVIDD G a0

Sentence-level Constructions

* Consistency we will continue to focus on
sentences

<English Sentence> =
<Simple Sentence> |
<Compound Sentence>

<Simple Sentence> =
<Declarative Sentence> |
<Interrogative Sentence> |
<Imperative Sentence> |
<Conditional Sentence>

<Compound Sentence> =
<Simple Sentence> <conjunction> <Simple Sentence> |

"Either" <Declarative Sentence>» "or" <Declarative Sentence>
"Either" <Imperative Sentence> "or" <Imperative Sentence>

7/11/2015 Budditha Hettige (budditha@yahoo.com) 90

- I

U

Basic types of sentences

Declaratives
Yes-No (Questions

e John left. e Did John leave?

S —» Aux NP VP
o5 = NP VP * e

WH Questions (who, where, what, which, why, how)
Imperatives o When did John leave?
¢S — Wh-NP Aux NP VP

e Leave! eS - Wh-NP VP
oS VP

NLE

91

VOOPPWOPOOOPIVDVDIIIVDIDD 9

Recursion

 Nominal = Nominal PP (PP) (PP)
— Is an example of RECURSIVE rule

* Other examples:
— NP = NP PP
~VP > VP PP

* Recursion a powerful device, but could have
bad consequences (see lectures on parsing)

NLE 92

VOOPPOOOOLPIVDOVPI IO ID P9 @

Recursion and VP attachment

e Flights to Miami

e Flights to Miami from Boston

e Flights to Miami from Boston in April

¢ Flights to Miami from Boston in April on Friday

¢ Flights to Miami from Boston in April on Friday with
lunch.

NLE

VOOV OOOOOLIVDOVDI IV I P G @

Coordination

« NP -> NP and NP
— John and Mary left

« VP> VPandVP
— John talks softly and carries a big stick

« S>Sand/but/S
— Kim is a lawyer but Sandy is reading medicine.

 In fact, probably English has a
— XP > XP and XP
rule

NLE

94

2 Write suitable CFG for English NP

L

L

R

@

! <noun phrase> =

i "the" <specific proper noun> |

g <proper noun> |

' <non-personal pronoun> |

A <article> [<adverb>* <adjective>] <noun> |

i [<adverb>* <adjective>] <noun-plural> |

; <proper noun-possessive> [<adverb>* <adjective>] <noun> |
! <personal possessive adjective> [<adverb>* <adjective>] <noun>
|

i <article> <common noun-possessive>

y [<adverb>* <adjective>] <noun>

2

3

>

EJ

D

= 7/11/2015 Budditha Hettige (budditha@yahoo.com) 95

VOOV OOOOOLIVDOVDI IV I P G @

Write suitable CFG for English VP

<verb>

= <WVls> |<VZ2s> |<V3iz> |
<Vlp> |[<V2p> |[<V3p> |
<Vpast> |<linking wverk>

<linking verb> = "am" |["are" ["is" | "was"| "were" |
"look" | "looks" | "looked" |
"become" | "becamse" | "become" |

<verb phrase> =

7/11/2015

("had" |"have" |"has") ["not"] <Vpastp> |

("had" |["hawve" |"has") ["not"] "been" [<Vpastp> | <Ving>] |

<auxv> ["not"] "have" <Vpastp> |

<guxV> ["not"] "have" "been" [<Vpastp> | <Ving>] |

<auxV> ["not"] "be" [<Vpastp> | <Ving>] |

<auxV> ["not"] <vVinf> |

"ought" ("to" | "not") <Vinf> |

"ought" ("to" | "not") "be" [<Vpastp> | <Ving>] |

"ought" ("to" | "not") "have" <Vpastp> |

"ought" ("to" | "not") "hawve" "been" [<Vpastp> | <Ving>] |

{lran | "dozgh | "did" ["ﬂDt"] [{Viﬂf}] |

{"am" | "z e | " j_S" | Mgzs" | "WEI'E"} ["ﬂDt"] [{Vpaﬁtp} | {Viﬂg}] |

{ Mo ™ | L= |] j_S] | Migzg M | Mye el } ["ot ™] " bEiﬂg " [{Vpastp}] |

{"am" | "z e | "j_S" | Mgzs" | "WEI'E"} ["ﬂDt"] "gDiﬂg" M oW [‘{Viﬂf}]
Budditha Hettige (budditha@yahoo.com) 96

